orientation of the tetrahedra by the existence of changes in $d-p \pi$-bonding contributions can explain the observed difference of $0.58 \AA$ in the lattice parameters of sodalite and helvite. The changes in ionic radii in the series $\mathrm{Mn}(\mathrm{II}), \mathrm{Fe}(\mathrm{II})$, and $\mathrm{Zn}(\mathrm{II})$ cause the decrease in a in the helvite group. On this basis, the predicted difference between each of the members is $0.07 \AA$, in good agreement with those observed ($0 \cdot 10 \AA$, helvite to danalite, and $0.08 \AA$, danalite to genthelvite).

One of the authors (WMH) wishes to acknowledge the Monsanto Chemical Company for a summer fellowship providing support during part of this work. Dr G. V. Gibbs reviewed the manuscript and suggested a number of improvements.

References

Barth, T. (1926). Norsk. Geol. Tidsskrift. 9, 40-42.
Brown, G. E., Gibbs, G. V. \& Ribbe, P. H. (1969). Amer. Miner. 54, 1044.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE: A Fortran Crystallographic Function and Error Program. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Corliss, L., Elliot, N. \& Hastings, J. (1956). Phys. Rev. 104, 924.
Cruickshank, D. W. J. (1961). J. Chem. Soc. p. 5486.
Danø, M. (1966). Acta Cryst. 20, 812.
Doelter, C. A. (1914). Handbuch der Mineralchemie, Band 2_{1}, pp. 723-725. Dresden: Theodor Steinkopff.
Gibbs, G. V., Breck, D. W. \& Meagher, E. P. (1968). Lithos, 1, 275.
Glass, J. J., Jahns, R. H. \& Stevens, R. E. (1944). Amer. Miner. 29, 163.
Gottfried, K. (1927). Z. Kristallogr. 65, 425.
Hintze, C. (1897). Handbuch der Mineralogie, Band 2, pp. 447-452. Leipzig: Veit.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
Löns, J. \& Schultz, H. (1967). Acta Cryst. 23, 434.
Pauling, L. (1930). Z. Kristallogr. 74, 213.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925.

The Structure of Hydrogen Triuranate \dagger

By Stanley Siegel, Arlen Viste, \ddagger Henry R. Hoekstra and Benjamin Tan
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

(Received 1 March 1971)

Abstract

Hydrogen triuranate, $\mathrm{H}_{2} \mathrm{U}_{3} \mathrm{O}_{10}$, is triclinic, space group $P \overline{1}$, with $a=6.802$ (5), $b=7 \cdot 417$ (16), $c=$ 5.556 (5) $\AA, \alpha=108 \cdot 5(4), \beta=125 \cdot 5(1)$, and $\gamma=88.2(2)^{\circ}$. Measured density is $6.7 \mathrm{g.cm}{ }^{-3}$ and the computed value is $6.85{\mathrm{~g} . \mathrm{cm}^{-3}}^{\text {for }}$ the one formula weight. The structure was resolved with 756 independent reflections recorded with an automatic diffractometer utilizing the double-filter technique. A least-squares refinement, based on F, gave an R value of 6.0%. The configuration of oxygen atoms about $\mathrm{U}(1)$ (at origin) is an octahedron, while the coordination about $\mathrm{U}(2)$ (in general positions) is a pentagonal bipyramid. Apex oxygen atoms lead to shared $U(2)-U(1)-U\left(2^{\prime}\right)$ bipyramids and octahedra to give triuranate groups along c^{*}. The apex (uranyl) oxygen atoms of each bipyramid form part of an octahedral array of oxygen atoms about the point $0 \frac{1}{2} 0$ of the unit cell as a 'center'. The hydrogen atoms can be shown to be associated with oxygen atoms of this octahedron.

Introduction

One of the phases in the $\mathrm{UO}_{3}-\mathrm{H}_{2} \mathrm{O}$ system is a composition previously considered to be the 'hemihydrate', $\mathrm{UO}_{3} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$. Infrared (IR) observations by Urbanec (1966) show, however, that the compound does not contain lattice or coordinated water; hence, the composition should be formulated as $\mathrm{H}_{2} \mathrm{U}_{2} \mathrm{O}_{7}$ or as $\mathrm{U}_{2} \mathrm{O}_{5}(\mathrm{OH})_{2}$. Early X-ray studies (Vier, 1944) assigned monoclinic symmetry to this phase, but subsequent observations (Staritsky \& Walker, 1952) led to triclinic

[^0]symmetry with $a=6 \cdot 87, b=7 \cdot 42, c=5 \cdot 57 \AA, \alpha=107 \cdot 5$, $\beta=125$, and $\gamma=89 \cdot 5^{\circ}$. Based on a measured density of $6.7 \mathrm{~g} . \mathrm{cm}^{-3}$, these parameters lead to three formula weights of the hemihydrate in the unit cell and a calculated density of $6.78 \mathrm{~g} . \mathrm{cm}^{-3}$. No further structural work appears to have been performed on this compound.

Our investigation was carried out as part of a continuing study of uranium oxide systems, and particularly because of the bearing this hydrate has on the structure of certain oxides. Interest in the phase also stems from the fact that the assigned unit cell does not contain an integral number of water molecules and that our analytical data gave $\mathrm{U}: \mathrm{H}_{2} \mathrm{O}$ ratios approaching $3: 1$, rather than $2: 1$. In addition, the IR spectrum shows a remarkable similarity to transition metal tri-
uranate $\left(\mathrm{MU}_{3} \mathrm{O}_{10}\right)$ spectra. Results of the present study confirm the reported triclinic symmetry of this phase, but show that its composition is $\mathrm{H}_{2} \mathrm{U}_{3} \mathrm{O}_{10}$, i.e. hydrogen triuranate.

Experimental studies

Crystals of $\mathrm{H}_{2} \mathrm{U}_{3} \mathrm{O}_{10}$ were prepared by heating UO_{3} in dilute nitric acid (Hoekstra, Bourey \& Siegel, 1972) for several days in a platinum-lined reactor at $350^{\circ} \mathrm{C}$. As indicated by Staritsky \& Walker (1952), the crystals are usually polysynthetically twinned; however, it was possible to cut an untwinned specimen suitable for X-ray diffraction. Reexamination of the crystal with single-crystalmethods led to the same symmetry and cell measurements as reported. Refined cell parameters obtained with a diffractometer are: $a=6 \cdot 802$ (5), $b=7 \cdot 417$ (16), $c=5.556$ (5) $\AA, \alpha=108.5$ (4), $\beta=125 \cdot 5$ (1), and $\gamma=88.2$ (2). The calculated density derived from these values is $6.85 \mathrm{~g} . \mathrm{cm}^{-3}$ for one formula weight of $\mathrm{H}_{2} \mathrm{U}_{3} \mathrm{O}_{10}$.

The linear absorption coefficient, based on Mo $K \bar{\alpha}$ ($\lambda=0.71069 \AA$), is $708 \mathrm{~cm}^{-1}$, thereby necessitating the use of a small crystal. In order to keep μr to a low value, a section of dimensions $0.0076 \times 0.0092 \times 0.0076$ cm was prepared. Edges and corners were somewhat eroded, so that the absorption correction subsequently could be based on a sphere of the same volume. This led to an average μr value of 3.6.

In a test case with Mo $K \bar{\alpha}$ radiation, some reflections were recorded utilizing both the 2θ scan and doublefilter ($\mathrm{Y}-\mathrm{Zr}$) methods. The double-filter technique was very satisfactory over all ranges of angle and intensity; thus, it was used as the data-collection mode.

Intensity data were collected with a General Electric Automatic XRD 490 for the diffraction range up to $2 \theta=52^{\circ}$. The hemisphere was recorded, leading to 756 independent reflections used in the analysis. Lorentz, polarization, and absorption corrections were applied in the usual manner.

Positions of the U atoms were determined from a three-dimensional Patterson function plot. This analysis was derived from a modified version of the Sly \& Shoemaker (1960) Two and Three-Dimensional Crystallographic Fourier Summation Program for the IBM 704 Computer. Uranium peaks at the origin and general position $x \sim 0.44, y \sim 0.25$, and $z \sim 0$ were deduced from the data. General positions were refined with program

ORFLS (Busing, Martin \& Levy, 1962). For these calculations, the scattering curve for uranium was obtained from values given in International Tables for X-ray Crystallography (1962). Anamalous dispersion corrections ($\Delta f^{\prime}=-9 \cdot 19$ and $\Delta f^{\prime \prime}=9 \cdot 09$) for uranium, reported by Cromer (1965), were included in evaluating the uranium contribution. The imaginary part of the dispersion correction was applied during the structure determination, following the procedure described by Zachariasen (1965).

Oxygen positions were deduced from a threedimensional Fourier synthesis using the refined uranium coordinates. A difference synthesis was also prepared with the uranium contributions removed from the observed structure factors, and this led to the formation of distinct oxygen peaks at the same positions noted previously. The contribution of these oxygen atoms, based on the O^{2-} scattering curve of Tokonami (1965), was added to the uranium scattering to derive $F_{\text {cal }}$ for a least-squares analysis. Refinements

Fig. 1. Projection of $\mathrm{H}_{2} \mathrm{U}_{3} \mathrm{O}_{10}$ in a - b plane. Oxygen atoms (O(4), $O\left(4^{\prime}\right)$, and $O(5)$, which are part of the chain configuration, nearly coincide with $U(1)$ and $U(2)$ in projection and are not shown. Relative positions of these oxygen atoms are shown in Fig. 2. Oxygen atoms $O(5)$ and $O\left(5^{\prime}\right)$ indicated by dashed circles arise from neighboring unit cells.

Table 1. Position parameters and temperature factors

	U(1)	U(2)	$\mathrm{O}(1)$	$\mathrm{O}(2)$	$\mathrm{O}(3)$	$\mathrm{O}(4)$	O(5)
x	0	0.43806 (18)	$0 \cdot 0674$ (33)	0.3126 (32)	0.6936 (33)	0.7559 (40)	0.6278 (40)
y	0	$0 \cdot 25088$ (14)	$0 \cdot 2286$ (27)	0.5469 (26)	0.0409 (26)	$0 \cdot 8519$ (32)	0.3503 (32)
z	0	-0.00389 (25)	-0.0193 (46)	-0.0044 (44)	-0.0075 (44)	$0 \cdot 4304$ (54)	$0 \cdot 4137$ (54)
${ }_{B}^{B}\left(A^{2}\right)$			0.78 (31)	0.61 (29)	0.67 (30)	$1 \cdot 71$ (38)	$1 \cdot 68$ (38)
β_{11}	$0 \cdot 00557$ (46)	$0 \cdot 00598$ (35)					
β_{22}	0.00331 (29)	$0 \cdot 00216$ (21)					
β_{33}	0.01560 (91)	$0 \cdot 01360$ (67)					
β_{12}	0.00178 (27)	$0 \cdot 00189$ (19)					
β_{13}	0.00766 (53)	0.00727 (38)					
β_{23}	$0 \cdot 00413$ (40)	$0 \cdot 00347$ (28)					

Fig. 2. Perspective view of shared configurations in $\mathrm{H}_{2} \mathrm{U}_{3} \mathrm{O}_{10}$.
(with unit weights) were carried out for the two space groups $P 1$ and $P \overline{1}$ through the isotropic temperature stage. Refinement proceeded smoothly only for $P \overline{1}$ (P l gave unreasonable temperature factors for oxygen). Therefore the centrosymmetric space group is considered to be applicable. The final conventional reliability index R is 6.0%, based on anisotropic temperature factors for uranium and isotropic temperature factors for oxygen. Reflections 001, 002, and 003 were eliminated in the least-squares refinement because of high backgrounds and attendant uncertainties in evalluating the true intensities. Resulting coordinates and thermal factors are presented in Table 1. Table 2 lists observed and computed structure factors.

Discussion of the structure

A projection on the basal $a-b$ plane is shown in Fig. 1. Uranium atoms from an extended, distorted hexagonal array but with a uranium atom removed from the hexagon at every point: $0 \frac{1}{2} 0$. At a height $d_{001}(=4 \cdot 21$ \AA), the network seemingly overlays that on the basal plane but is so shifted that equivalent uranium atoms are not above each other. Thus, $\mathrm{U}(2)$ is above $\mathrm{U}(1)$, $\mathrm{U}\left(2^{\prime}\right)$ is above $0 \frac{1}{2} 0, \mathrm{U}(1)$ is above $\mathrm{U}\left(2^{\prime}\right)$, and $0 \frac{1}{2} 0$ is above $U(2)$. The effect is to produce a nearly linear configuration of holes and $U(1)$ and $U(2)$ atoms along the direction of c^{*}. The shift of the configuration on the upper face of the cell is substantial, and it arises from the large α and β angular values.

Table 2. Observed and calculated structure factors

Oxygen atoms $O(1), O\left(1^{\prime}\right), O(3)$, and $O\left(3^{\prime}\right)$ form a planar and nearly square array about the origin atom $\mathrm{U}(1)$. Oxygen atoms $\mathrm{O}(1), \mathrm{O}(2), \mathrm{O}\left(2^{\prime}\right), \mathrm{O}(3)$, and $O\left(3^{\prime}\right)$ form a near planar and pentagonal coordination about $\mathrm{U}(2)$. Atoms $\mathrm{O}(1), \mathrm{O}(2)$, and $\mathrm{O}(3)$ are responsible for the extended sharing of the square and pentagonal configurations in the $a-b$ plane.

The shift of the upper face of the cell is such that $\mathrm{U}(1)$ and $\mathrm{U}(2)$ fall above or below each other. Oxygen atom $\mathrm{O}\left(4^{\prime}\right)$ occurs at a height z to link $\mathrm{U}(1)$ and $\mathrm{U}(2)$. Hence, pentagonal- and square-coordinate uranium atoms are linked by $\mathrm{O}\left(4^{\prime}\right)$, and the three atoms are nearly collinear along the direction of c^{*}. Finally, $\mathrm{O}(5)$ atoms are distributed one above $\mathrm{U}(2)$ and one below $\mathrm{U}\left(2^{\prime}\right)$. Atoms $\mathrm{O}\left(4^{\prime}\right)$ and $\mathrm{O}(5)$ produce a pentagonal bipyramid coordination about $\mathrm{U}(2)$, while atoms $\mathrm{O}(4)$ and $\mathrm{O}\left(4^{\prime}\right)$ complete an octahedral configuration about $\mathrm{U}(1)$. As shown in Fig. 2, $\mathrm{O}(5)$ is bonded to only one uranium atom, $\mathrm{U}(2)$. Oxygen atom $\mathrm{O}\left(4^{\prime}\right)$ is shared by $\mathrm{U}(1)$ and $\mathrm{U}(2)$, but it is bonded much more
strongly to $\mathrm{U}(2)$ to give rise, with $\mathrm{O}(5)$, to a uranyl grouping typical of most $\mathrm{U}(\mathrm{VI})$ compounds.

Bond distances are given in Table 3. Bond angles describing the extent of the distortions from regular octahedral and pentagonal configurations are also presented in Table 3. The bond angle $\mathrm{O}(5)-\mathrm{U}(2)-\mathrm{O}\left(4^{\prime}\right)$ is $179.9 \pm 1.3^{\circ}$; therefore, the uranyl bond is characteristically collinear, although in this case no symmetry requirement for a 180° bond angle is present in the structure. Because of the short $\mathrm{U}(1)-\mathrm{O}(1)$ bond length of $1.83 \AA$, this must also be considered a modified uranyl bond associated with $\mathrm{U}(1)$. Angle $\mathrm{O}(1)-\mathrm{U}(1)-$ $\mathrm{O}\left(1^{\prime}\right)$ is 180° by symmetry.

In Fig. 1 , atoms $O(1), O(2), O\left(1^{\prime}\right)$, and $O\left(2^{\prime}\right)$ show a planar, but nearly square distribution, about the point $0 \frac{1}{2} 0$ which is a center of symmetry. Atoms $\mathrm{O}(5)$ and $\mathrm{O}\left(5^{\prime}\right)$ complete the coordination to form a distorted octahedron about this point as a center. Hydrogenatom positions can be shown to be associated with this oxygen octahedron.

Table 3. Interatomic distances and bond angles
Standard deviations are given in parentheses.

Octahedral configuration about $\mathrm{U}(1)$	
$\mathrm{U}(1)-\mathrm{O}(4)$	$2 \cdot 42(3) \AA$
$\mathrm{U}(1)-\mathrm{O}(3)$	$2.07(2)$
$\mathrm{U}(1)-\mathrm{O}(1)$	$1.83(2)$
$\mathrm{O}(3)-\mathrm{O}\left(4^{\prime}\right)$	$3 \cdot 11(3)$
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)$	$3.27(4)$
$\mathrm{O}(1)-\mathrm{O}\left(4^{\prime}\right)$	$3.04(4)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)$	$3.03(4)$
$\mathrm{O}(1)-\mathrm{O}(3)$	$2.98(3)$
$\mathrm{O}(1)-\mathrm{O}\left(3^{\prime}\right)$	$2.53(3)$ (shared)

Pentagonal configuration about U(2)			
$\mathrm{U}(2)-\mathrm{O}(5)$	1.74 (3) \AA A	$\mathrm{O}(1)-\mathrm{O}\left(2^{\prime}\right)$	$2 \cdot 88$ (3) \AA A
$\mathrm{U}(2)-\mathrm{O}\left(4^{\prime}\right)$	1.78 (3)	$\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)$	2.60 (4) (shared)
$\mathrm{U}(2)-\mathrm{O}(1)$	2.48 (2)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}(3)$	3.04 (3)
$\mathrm{U}(2)-\mathrm{O}(2)$	$2 \cdot 33$ (2)	$\mathrm{O}(3)-\mathrm{O}\left(3^{\prime}\right)$	$2 \cdot 78$ (4)
$\mathrm{U}(2)-\mathrm{O}\left(2^{\prime}\right)$	2.27 (2)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{O}(1)$	2.53 (3) (shared)
$\mathrm{U}(2)-\mathrm{O}(3)$	2.31 (2)		
$\mathrm{U}(2)-\mathrm{O}\left(3^{\prime}\right)$	$2 \cdot 40$ (2)	$\mathrm{O}(5)-\mathrm{U}(2)-\mathrm{O}\left(4^{\prime}\right)$	179.9 (13) ${ }^{\circ}$
$\mathrm{O}(5)-\mathrm{O}(1)$	$3 \cdot 04$ (3)	$\mathrm{O}(5)-\mathrm{U}(2)-\mathrm{O}(1)$	$90 \cdot 4$ (10)
$\mathrm{O}(5)-\mathrm{O}(2)$	2.86 (4)	$\mathrm{O}(5)-\mathrm{U}(2)-\mathrm{O}(2)$	88.0 (11)
$\mathrm{O}(5)-\mathrm{O}\left(2^{\prime}\right)$	2.84 (3)	$\mathrm{O}(5)-\mathrm{U}(2)-\mathrm{O}\left(2^{\prime}\right)$	89.0 (11)
$\mathrm{O}(5)-\mathrm{O}(3)$	2.95 (4)	$\mathrm{O}(5)-\mathrm{U}(2)-\mathrm{O}(3)$	$92 \cdot 4$ (11)
$\mathrm{O}(5)-\mathrm{O}\left(3^{\prime}\right)$	2.96 (4)	$\mathrm{O}(5)-\mathrm{U}(2)-\mathrm{O}\left(3^{\prime}\right)$	89.8 (11)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{O}(1)$	3.04 (4)	$\mathrm{O}(1)-\mathrm{U}(2)-\mathrm{O}(2)$	$73 \cdot 4$ (7)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)$	$3 \cdot 27$ (4)	$\mathrm{O}(2)-\mathrm{U}(2)-\mathrm{O}\left(2^{\prime}\right)$	68.7 (9)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{O}(3)$	$2 \cdot 86$ (3)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{U}(2)-\mathrm{O}(3)$	$83 \cdot 2$ (8)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$	2.92 (4)	$\mathrm{O}(3)-\mathrm{U}(2)-\mathrm{O}\left(3^{\prime}\right)$	72.4 (9)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{O}(2)$	2.98 (4)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{U}(2)-\mathrm{O}(1)$	$62 \cdot 3$ (7)
Octahedral configuration about point $0 \frac{1}{2} 0$			
$\mathrm{O}(1)-\mathrm{O}(2)$	2.88 (3) \AA A	$\mathrm{O}(1)-\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	85.8 (5) ${ }^{\circ}$
$\mathrm{O}(1)-\mathrm{O}\left(2^{\prime}\right)$	3.08 (3)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}(1)-\mathrm{O}(2)$	94.2 (8)
$\mathrm{O}(1)-\mathrm{O}\left(5^{\prime}\right)$	$3 \cdot 32$ (4)	$\mathrm{O}\left(5^{\prime}\right)-\left(0 \frac{1}{2} 0\right)-\mathrm{O}(1)$	91.5 (10)
$\mathrm{O}(2)-\mathrm{O}\left(5^{\prime}\right)$	2.91 (4)	$\mathrm{O}\left(5^{\prime}\right)-\left(0 \frac{1}{2} 0\right)-\mathrm{O}(2)$	74.8 (8)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	3.79 (4)	$\mathrm{O}\left(5^{\prime}\right)-\left(0 \frac{1}{2} 0\right)-\mathrm{O}\left(2^{\prime}\right)$	$105 \cdot 2$ (8)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	$3 \cdot 24$ (4)		
Metal-metal and others			
$\mathrm{U}(1)-\mathrm{U}(2)$	3.576 (5) \AA	$\mathrm{U}(2)-\mathrm{O}\left(4^{\prime}\right)-\mathrm{U}(1)$	$177.0(14)^{\circ}$
U (1)-U(2)	$4 \cdot 190$ (6)		
$\mathrm{U}(2)-\mathrm{U}\left(2^{\prime}\right)$	3.797 (8)		
$\mathrm{O}(5)-\mathrm{O}\left(5^{\prime}\right)$	3.03 (5) wit		

Hydrogen bonding

Bond distances in Table 3 show that, in terms of the bond-length bond-strength curve for $\mathrm{U}(\mathrm{VI})$ (Zachariasen \& Plettinger, 1959), some oxygen atoms exhibit valences below the value $2 \mathrm{v} . \mathrm{u}$. (valence units).

Observed bond distances give bond-strength sums for $U(1)$ and $U(2)$ of 5.91 and 6.04 v.u. respectively, indicating that bond distances have been determined with reasonable accuracy. Bond strengths for $\mathrm{O}(3)$ [bonded to $\mathrm{U}(1), \mathrm{U}(2), \mathrm{U}\left(2^{\prime}\right)$] and $\mathrm{O}\left(4^{\prime}\right)$ [bonded to $\mathrm{U}(1), \mathrm{U}(2)]$ are $2.1 \mathrm{v} . \mathrm{u}$. and $2.05 \mathrm{v} . \mathrm{u}$. respectively. However, bond strengths for $\mathrm{O}(1)$ and $\mathrm{O}(5)$ fall slightly below 2 v.u., while the bond-strength for $O(2)$ is the very low value: $1.26 \mathrm{v} . \mathrm{u}$. This is taken as an indication that a hydrogen atom is strongly associated with $\mathrm{O}(2)$.

The IR spectrum of $\mathrm{H}_{2} \mathrm{U}_{3} \mathrm{O}_{10}$ exhibits a single $\mathrm{O}-\mathrm{H}$ stretching absorption at $3460 \mathrm{~cm}^{-1}$ (Hoekstra et al., 1972). Application of a relationship between IR stretching frequencies and the hydrogen bond distances in crystals (Bellamy \& Owen, 1969) leads to a predicted $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond length of $2.83 \AA$. If hydrogen bonding occurs to both $\mathrm{O}(1)$ and $\mathrm{O}\left(5^{\prime}\right)$, our data give two bonding distances for each hydrogen atom in $\mathrm{H}_{2} \mathrm{U}_{3} \mathrm{O}_{10}: \mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}(1)=2 \cdot 88 \quad \AA$, and $\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}\left(5^{\prime}\right)=2 \cdot 91 \AA$. Within error estimates, these bond lengths are equal and in accord with predictions by Bellamy \& Owen. Although it is reasonable, based on bond-strength considerations and IR data, to place the hydrogen atoms as indicated (and at corresponding centrosymmetric positions as shown in Fig. 1), a more precise picture of the bonding must derived from a neutron-diffraction study.

As indicated above, the IR spectrum of $\mathrm{H}_{2} \mathrm{U}_{3} \mathrm{O}_{10}$ is similar to that of $\mathrm{CuU}_{3} \mathrm{O}_{10}$ (Urbanec, 1966; Hoekstra
\& Marshall, 1967). The symmetry of copper triuranate is monoclinic with $a=7.57, b=6 \cdot 47, c=16.68 \AA$, and $\beta=91 \cdot 07^{\circ}$. Preliminary structural results indicate that the stacking of uranium atoms along \mathbf{c} is similar to that found for $\mathrm{H}_{2} \mathrm{U}_{3} \mathrm{O}_{10}$ along the c^{*} direction, with Cu atoms probably located at the hole defined by the octahedral oxygen array in the hydrate. A pseudorepeat distance of $16 \cdot 88 \AA\left(4 d_{001}\right)$ in $\mathrm{H}_{2} \mathrm{U}_{3} \mathrm{O}_{10}$ gives a pseudo-cell of $a=6 \cdot 87, b=7 \cdot 42, c^{\prime}=16 \cdot 88 \AA$, with α^{\prime}, β^{\prime} and γ^{\prime} differing only by a few degrees from 90°, thus completing the similarity to $\mathrm{CuU}_{3} \mathrm{O}_{10}$.

References

Bellamy, L. J. \& Owen, A. J. (1969). Spectrochim. Acta, 25A, 329.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS: A Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Hoekstra, H. H., Bourey, E. E. \& Siegel, S. (1972). To be published.
Hoekstra, H. H. \& Marshall, R. H. (1967). Advances in Chemistry Series, No. 71, 211.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Sly, W. G. \& Shoemaker, D. P. (1960). Tech. Report, O.O.R. Contract DA-19-020-ORD-4696.

Staritsky, E. \& Walker, D. I. (1952). USAEC Report LA1439.
Tokonami, M. (1965). Acta Cryst. 19, 486.
Urbanec, Z. (1966). U. J. V. p. 1521.
Vier, D. (1944). USAEC Report A1277.
Zachariasen, W. H. (1965). Acta Cryst. 18, 714.
Zachariasen, W. H. \& Plettinger, H. A. (1959). Acta Cryst. 12, 526.

The Crystal and Molecular Structure of 4'-Fluoro-4-\{1-[4-hydroxy-4-(4'-fluoro)-phenylpiperidino]\}butyrophenone and its Hydrochloride

By Michel H.J.Koch and Gabriel Germain
Laboratoire de Chimie Physique et de Cristallographie, Université de Louvain, Belgium

(Received 13 January 1971)

Abstract

The structures of these compounds were determined by X-ray diffraction. The base crystallizes in the space group $P 2_{1} / c$ with dimensions $a=7.855, b=8.924, c=28.060 \AA$ and $\beta=105.45^{\circ}$ with $Z=4$. The hydrochloride crystallizes in the space group $P 2_{1} / a$ with $a=16 \cdot 611, b=7 \cdot 056, c=17 \cdot 458 \AA, \beta=102 \cdot 42^{\circ}$ and $Z=4$. Both structures were refined by block-diagonal least squares. Final R indexes of $0 \cdot 10$ and 0.07 respectively were obtained.

This butyrophenone derivative is related to a class of potent neuroleptics. Therefore it seemed interesting to determine the conformation of this compound in various environments as part of a structure-activity correlation study.

Experimental

Both compounds were recrystallized from hot isopropanol to form colourless prisms. Intensity data were collected on a Picker four-circle automatic diffrac-

[^0]: \dagger Based on work performed under the auspices of the U.S. Atomic Energy Commission.
 \ddagger On Ieave from Augustana College, Sioux Falls, South Dakota.

